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GLOBAL SUBJECTIVITY OF SUBMERSIONS

4v

VIA CONTRACTIBILITY OF THE FIBERS

BY

PATRICK J. RAnIER

* Department of Mathematics

University of Pittsburgh

Pittsburgh, PA 15260

ABSTRACT, We give a sufficient condition for a C1 submnersion F : X -. Y, X and Y real
Banach spaces, to be surjective with contractible fibers F-

1 (y). Roughly speaking, this
condlition "interpollate two well-nown but unrelated hypothese corresponding to the two
extreme cames Hadarnard's criterion when Y : X and F is a local diffeomorphisin, and
the Palais-Smale condition when Y = ft. These results may be viewed mas a global variant
of the implicit function theorem, which unlike the local one does not require spli kernels.
They are derived from a deformatilon theorem tailored to fit functionals with a norm-like
nondifferemiiability.

6A

1. Introduction.

If X and Y are real Banach spaces and F :X -. Y is a C' submersion, i.e. F'(x) is

onto Y for every x E Xare there conditions ensuring that F is onto Y? And when F is

surjective, what can be said about the topological structure of the "fibers" F'l(y), y E Y? W

From a 1967 work of Earle and Eells 181 we get this answer to the second question:

Theorem 1.1. Let X and Y be real Banacb spaces and F : X -. Y a C' submersion.

Assume that

S(i) Fis onto Y.

(ii) ker F'(z) splits for:z E X.

(iii) For every: z X, F'(z) has a right inverse *(:) EQ '(, X) such that the mapping

s: X -. (Y, X) is locally Lipschitz continuous and st:)/(l+1+I:Il) isilocally bouinded over

Sm
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Y(1) i.e. for every yo 4E V there are a neighborhood l'o of yo in Y and 'qu > 0 such (hatl

NhV10 + g S q,,Vz E F-'(V ). 0
Then, F : X - Y is a locally trivial CO fiber bundle. In particular. F-(y) is con-

tractibie for y E Y, and any two fibers are homeomorphic.

Earle and Eells' method of proof of Theorem 1.1 is as follows: assumptions (i), (ii)

and (iii) are used to establish the bundle structure by a horizontal lifting of paths. Local

Lipschitz continuity is involved via an associated ODE, and local boundedness is needed

for the completeness of the flow. This part extends to Cl Banach manifolds with a Finsler

structure. Contractibility of F-'(y) is obtained through its status of Banach manifold,

the homotopy sequence, and a theorem of J.H.C. Whitehead.

The major trouble with Theorem 1.1 is that its conditions (i) and (iii) are hard to check

in concrete applications, even for finite dimensional X and Y. Regarding (i), surjectivity,

results are scarce for mappings which do not enjoy any particular properness property. On I
the other hand, proper submersions, which are open and closed, are surjective. But as

we shall see, they are nothing more than diffeomorphisms except perhaps in some rather

pathological cases (Corollary 4.3). This implies the failure of the usual method of proof

of Hadamard's theorem to establish surjectivity instead of bijectivity, and explains the

apparent absence of such results from the literature. As for condit ion (iii) of Theorem 1.1,

the difficulty comes from local boundedness over Y, which holds for proper maps (not too

useful in our setting, as just mentioned), is accessible to verification in Hilbert spaces, but

is generally out of reach in Banach spaces because there is no absolute constant bounding

the norm of projections onto arbitrary complemented subspaces ([61 and [101). We also *
note that, in practice, local Lipschitz continuity of the right inverse demands local Lipschitz

continuity of F', i.e. F to be of class C2 - (in Palais' notation [121). In particular, Theorem

1.1 does not spply to general C' submersions.

It is the aim of this paper to prove, by a qltite different and direct method, a variant

of Theorem 1.1 which is more readily and more widely applicable, and which in addition

guarantees surjectivity of F without any properness assumption (Theorem 4.1). More

precisely, we shall only assume that a simple inequality holds, which in its crudest form

(')In 18, it is assumed that s is locally bounded over Y, but this generalization is straightforward.

2
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(1.1) UIF'(x)'y'iI ? c'llyf, Vr E X, Vy" E Y',

where F(z)* E £(Y*,X*) is the adjoint of F'(x) and c > 0 is a constant, and that the

space Y has a norm of class C1 away from the origin. This condition is of course. satisfied

when Y is a Hilbert space, and also (Restrepo 1141) when the dual Y" of Y is separable

(whence Y is separable). The sharper form of (1.1) we shall use is given in (4.2), and

a variant of it corresponds to a generalization of the Palais-Smale condition for Banach

space valued mappings (Corollary 4.1).

In all cases, surjectivity of F and contractibility of the "fibers" F-1 (y) will be ensured,

although in our setting there is no guarantee that F: X -- Y is a fiber bundle, as we are

not assuming that kerF"(z) splits for z E X, or that F is smoother than C'. However,

based upon Theorem 1.1, we prove that it is so if X and are vHilbert spaces and F is

of class C2 (Theorem 4.2), We also clarify the relationship between our condition (4.2)

and the hypotheses of Theorem 1.1: if dim Y < oo, condition (4.2) is strictly weaker, and

it is neither weaker nor stronger if dim Y = oc. In Corollary 4.2, we observe that Theorem

4.1 contains as a special case an improved version of Hadamard's theorem, which seems to

supercede the other available variants. In this respect, it should be pointed out that when

F is a local diffeomorphism, (1.1) is equivalent to Hadamard's condition IF'(z)-P'II-< k,

with k = l/c. Finally, in Theorem 4.3 we show that the mappings satisfying the condition

(4.2) also satisfy a converse of the intermediate value property: the inverse image of a

connected open subset is connected.

Everything hinges upon a deformation theorem (Theorem 3.1) which is the object of

Sections 2 and 3. To establish contractibility, our approach makes no use of liftings or

algebraic topology. It is very close to the methods of critical point theory, where the

goal is to deform one level set into another in the absence of critical points. One major

difference is that the classical theory applies only to finctionals of class C' in the whole 5
space X, while ours applies only to functionals which are not: for our assumptions to

make sense, the functionals must behave like the absolute value function [.rJ when X = R,

i.e. have a derivative bounded away from 0 in the vicinity of minimizers (this statement

| ..- L. and/or

Dlt kpa a ia)
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bahould not be taken literally; see Sections 2 and 3 for details). In Section 4, we use the

deformation theorem with the functional IF - yii, y e Y fixed, to prove nonemptyness and

contractibility of F-' (y).

For clarity of exposition, the simplest form of the deformation theorem, which suffices

when (1.1) holds, is proved in Section 2, Corollary 2.1. Section 3 presents the final gener-

alizations involving extra technicalities that we have preferred to keep separated so as not

to obscure the issue.

As mentioned earlier, the main result in 18] extends to Banach manifolds with a Finsler

structure. In contrast, ours remains valid only when X but not Y" is such a manifold,

because the need for a norm-like function of class C' on Y rules out the cases when Y is

not (difeomorphic to) a Banach space.

The deformation theorem (Theorem 3.1) has other applications, notably to critical point

theory and to the structure of the set of minimizers of functionals. which will be presented

elsewhere.

2. A result of contractibility.

Let X be a real Banasci space and J : X -- (-oo,0] a continuous functional. Denote

by Z the level set J-1(O). We shall assume throughout this section that J is of class C'

in X \ Z and that there is a constant c > 0 such that

(2.1) IIJ'(.r)II _> c, Y X \ Z.

Obviously, (2.1) never holds if Z #8 and J is C' in X, unless J =_ 0, and hence nondiffer- 0
entiability of J is essential here.

Recall that a pseudo-gradient vector field for J in X \ Z is a locally Lipschitz continuous

mapping V: X \ Z - X such that

(2.2) IIV(x)ll < 211J'(x)ll, Vx E X \ Z S

and

(2.3) j'(r)l,'(X) Ž II'(r)112. V~r E X \Z.

44



By (2.1), we have '(x) # 0, Yz C. X \Z, and hence there is a pseudo-gradient vector field

V for J in X \ Z (see e.g. 1121). FRX•o (2.1), (2.2) and (2.3) it easily follows that

(2.4) JIV(z)ll c, r E X \ Z,

and that

(2.3) J'(Z)V(X) ,

For x e X \ Z, let P(t, X) E X \ Z denote the solution of the initial value problem

(2.6) di 't,= lI((t,))H
I(O,.r) x.

Since V is locally Lipschitz continuous in X \ Z, the same thing is true of 1/7I1'l1, whence

V(t,z) is well-defined for t in some maximal interval [0, a(r)) with 0 < a(r) : w. In the

following lemma, we collect a few properties of the semi-flow V which are either trivial or

well known from ODE theory.

Lemma 2.1. (i) Let x E X \ Z and 0< t1 5 t2 < a(x). Then

(2.7) II(t02, -) - W(t1 , X)l 5 t2 - tl

and

(2.8) J(V(t2, ;))- J(A(ti, X)) _> •(2 - ti)
2

(ii) Let r E X \ Z and 0 < T < a(z). For evet. e > O, there is b > 0 sudi that

Il - xll < 6 =* T < a(y) and sup Ilk(t,x) - v(t.y)lI < e).feb.,71

Proof. (i) The inequality (2.7) follows from the fact that the field V/Iil'll has norm 1. For

the proof of (2.8), write S(,(t2 ,x)) - J(p(t1 ,r)) f" (*J(tr)))dt and use (2.5).

Part (ii) is the standard continuous dependence upon initial values. 03

Our second preliminary lemma is slightly more technical.

....
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Lemma 2.2. For z E X \ Z, the following properties hold:

(i) a() < oo.

(ii) ,(a(r),): lir q(t,x) exists And is in Z.

(iii) The inequalities (2.7) and (2.8) remain valid for t2 = a(z).

Proof. (i) Suppose by contradiction that a(r) = oo, so that (2.8) holds with t1 = 0 and

t2 = t > 0 arbitrary. Letting t -. oo, we find limoJ(((t, x)) = oo, contradicting the

hypothesis J < 0.

(ii) Let t. E [0,a(z)) be a sequence such that limn t. = a(x). From (i), (t.) is a Cauchy

sequence, whence po(t.,z) is a Cauchy sequence by (2.7). Furthermore, if i. E [0,a(r))

is another sequence such that limnn = a(z), it follows from (2.7) that lim jp(t ,z) -

•'(i.,s)ll = lim It. - i.I = 0. so that lir ýp(t,,,z) is independent of the sequence (t.),

i.e. lim W(t,z) exists.i--B(s)-

If _lim V(tz) E X \ Z, then 9(.,x) can be extended to some interval 10,a(t) + e)

with e > 0, in contradiction with maximality of (0,a(x)) (recall a(x) < oo from part (i)).

Thus, lim O(t,r) E Z.9 8(g)-

(iii) In inequalities (2.7) and (2.8), let t2 tend to a(x). By (ii) above and continuity

of -" and continuity of the function J, we obtain the validity of (2.7) and (2.8) for

t2 = a(z). 0

We now extend a and p to X and (0, oo) x X, respectively, by setting

(2.9) a(z)=0, w(t,r)=z if zEZ and t>o

and

(2.10) W(t.z) = f(a(z),x) E Z if zEX \ Z and t> a(x).

Note that the definition (2.10) makes sense in view of Lemma 2.2 (ii).

6
S)

S

S

0



Theorem 2.1. The above extensions of a and V are continuous.

Proof. We begin with continuity of a in X \ Z. Part (ii) of Lemma 2.1 already ensures

that a is lower semicontinuous in X \ Z. To prow. upper semicontinuity of a, suppose by

contradiction that there are a sequence x. E X \ Z with lim x. = x E X \ Z and 11> 0O

such that a(z.) > a(.) + q, Vn E N.

Choose r > 0 such that r < c,7/4 (with c as in (2.1)). In (2.8), let f2 = a(x) (see Lemma

2.2 (iii)) and tj = T E[ 0,a(z)). Because V(a(r),z) E Z and liam 4(T,z) = f(a(z),x)T 4(s)-

(Lemma 2.2 (ii)) and because J is continuous, we have lim J(V(T,z)) = 0. Thus, byT--(.)z-

choosing T close enough to a(z), we can manage so that J(ý(T,.)) 2! -r. From Lemma

2.1 (ii), we have rmn .o(T,z.) = V(T.r), whence nlim J(i(T, r.)) =J((T, r)). As a

result, for n large enough, we have

(2.11) J(,p(T,.T.)) > -2r.

Now, from (2.8) with r. replacing 2 and t I = T,12 = a(x) + 17 (< a(x.)) we infer that

(2.12) J(p(a(x) + q,x,.)) 2! J(v(T, x.)) + 2(a(z) + q - T).
2

Using (2.11) and a(x) - T > 0, r < _q/4, we find (for n large enough)

(2.13) J(p(a(x) + , ,x)) ?> -2r + L > 0,
- 2

in contradiction with the hypothesis J < 0. This shows that a is upper semicontinuous, p
hence continuous, in X \ Z.

We now pass to the proof of the continuity of the extension of a defined by a(.r) = 0

for x E Z. Clearly, it suffices to show that if x E Z and x, E X \Z, limn , = z, then

lim a(z.) = a(x)(= 0). To see this, replace z by z. and choose t = 0, t2 = a(z.) in (2.8)

tLemma 2.2 (iii)). Since i(0,, .) = z. and w,(a(z.),z.) z Z J-'(0) ((2.6) and Lemma •

2.2 (ii)), we obtain

2
(2-14) 0 < a(T.) !5 -J(Z'.),

7

CI



which implies 0 < lim O(z.) < -!J(z) = 0.

To prove the continuity of the extension of ý in (2.9) and (2.10), we choose (t,z) E 0
(0,oo) x X and a sequence (t.,z.) C- 10,oo) x X such that urn (t., r.) = (t,z), and I

consider four cases.

Case 1: 0 :5 t < a(z),z E X\Z. If so, we have:;. E X\Z for n large enough, and

rim V,(t.,z.) = p(t,z) follows from Lemma 2.1 (ii).
Uý 

I6
Case 2: t = a(z),z E X \ Z. Once again, z. E X \ Z for n large enough, and by definition

(see (2.10)) we have •(t,,.) = ,p(a(z.),z.) if t. > a(z.). Thus, replacing t. by a(:.)

when t. > a(z.), we still have lim t. = a(z) = t by continuity of a, and W(t., z.) is

unchanged. This shows that we may assume t. :5 a(z.) with no loss of generality.

Let 0 5 T < a(z) be arbitrary. From Lemma 2.1 (ii), ;(T,z.) is well defined for n large

enough and

(2.15) lim p(T.r,,) = p(T,z).

Next, by (2.7) with tn = T. t2 = a(z) (Lemma 2.2 (iii)), we find

(2.16) Ip(a(z),z) - 0(T,z)II <_ a(z) - T.

Likewise, for t. E [0,a(z,)) as well as for t. = a(z.):

(2.17) 119,(t., z.) - p(T. z.)l 11 !5It. - TI. •

Now, write

Taking the limit as n -. o and using (2.15), (2.16) and (2.17), we find (recall lim t, =

a(z))

rira NI(t., z.) - v(a(z), z)il !< 2(a(.T) - T) ,

$



whence iMWN(t.,z.) - s(a(z), z)II = 0 since 0 < T < a(x) is arbitrary. Equivalently, 0
Z. •t,•) = 4o(G(). Z).

Cue 3: t > a),•,z E X \ Z. Here, we have z. E X \ Z and t. > a(r.) (by continuity p
of a, pro.t'. sbove) for n large enough. Thus (see (2.10)), v(t,,r.) = -p(a(r.),z.) and

v(t. p(a(z),z), so that liim Vt(9,z.) = p(t,z) if and only if lim (n(zn),zX.) =

4p(a(z),.z), which follows from Case 2 with t. = a(z.).

Case 4: z E Z. From (2.9), we have p(t.r) = 2, and p(t., r.) = r. if x. E Z. Thus,
the only nontrivial part of the proof consists in showing that limrn (t,,:) = r when

u-se

z. E X \ Z. Furthermore, using once again V(t., z.) = V(a(:.), x.) if t. > a(z.), it

suffices to consider the cawe when t. 5 a(z. ).

Choosing T = 0 in (2.17) (still valid), we see that (, - ri - t. < a(r.). By

continuity of a, lim a(z.) = a(:) = 0 (see (2.9)). Thus, lim [[,(t,,.) - :~II = 0, i.e.

lim W(t., z.) = x. This completes the proof. 0

Corollary 2.1. The set Z = J-1(0) is (nonempty and) contractible.

Proof Let a and • be extended to X and 10, oo) x X, respectively, according to (2.9) and

(2.10). From Theorem 2.1, these extensions are continuous. Define 0,: [0, 1] x X -, X by

0,(tx) = v(a(z)t,z), so that •, is continuous with iV,(0, z) = z for x E X, V(1, x) E Z for

r E X, and 0,(t,z) = (0, z) - z for z E Z and t E [0, 1]. This means that V, is a (strong)

deformation retraction of X onto Z. It is both standard and elementary that this implies

that X and Z have the same homotopy type (see e.g. [31), and since X is contractible, Z *
is also contractible. 0l

Remark 2.1: The (straightforward) argument used in the proof of Corollary 2.1 is needed

in the case when X is a Banach manifold. When X is a Banach space, as assumed here,

an explicit deformation of Z (within itself) into a point is given by the mapping

(t,.-) E 10,.1] x Z ,-- pa((l - 0z),).0 - t)z) E Z,

which is identity for t = 0 by (2.9), and constant (= ,(a(O),O)) for t = 1. 0

L. .



3. Genalrmisatlons.

Our applications in the next section are based on generalizations of Corollary 2.1 in-

volving sharpenings of Theorem 2.1 where now c in (2.1) becomes a function of x. For

clarity, we first consider two different cases separately in the next two lemmas.

Leamna 3.1. Theorem 2.1 and Corollary 2.1 remain valid if, in (2.1), we let c = c(Ilxl))

where c : [0, oo) - (0,oo) is a nonincreasing function such that fo0 c(s)ds = no.

Proof. Existence of a (locally Lipschitz continuous) pseudo-gradient vector field V for J

in X \ Z depends only upon P(z) being nonzero in X \ Z and not upon (2.1). Thus, V

continues to exist and there is nothing to change in Section 2 up to and including inequality

(2.7), if c = c( jz1:1) eve;ywhere. Evidently, inequality (2.8) makes no longer sense as stated,

and should be replaced by

(3.1) J(p(t2,r)) - J(t(I,,z)) • 2 J,, c(llzll + s)ds.

To see that (3.1) holds, note that the method of proof of (2.8) first yields J(j(t 2 ,z)) -

J(•(ti,,)) > _ f,"cf(lp(s.r)I)ds. From (2.7) with t2 = s and t, = 0, it follows that

Hv~sz~ll < liizj + s, whence c(lls(sz)tl) >- c(fllx( + s) by monotonicity of c. This proves

(3.1). I

Aside from replacing (2.8) by (3.1) everywhere, the proofs of the previous section go

through with only minor modifications, described below. To begin with, for the proof of

Lemma 2.2 (i), it must be observed that f1 °c(IzxII + s)ds = no because foc(s)ds = oc

and f 1 ," c(s)ds < oo by monotonocity of c. * *
Next, at the beginning of the proof of Theorem 2.1, r > 0 should now be chosen such

h a) ",C(M÷ s)ds, where M > 0 is a constant bounding the norm of the

convergent sequence (z,2). Inequality (2.12) should now read

(3.2) J(alrl+,i.z.)l>>_Jlp(T, ,.)l+ ( + slds.

Relations (2.11) (unchanged) and (3.2). along with T < a(z) thus yield, instead of (2.13)

J((-(a(z) + Y1,z.))> -2r + I c(M + s)ds,
- 2

1o
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and the choice of r continues to provide the desired contradiction.

Lastly, inequality (2.14) should be replaced byI

(3.3) 0 < c(M + s)ds <- -2J(x.), I

where once again M > 0 is a constant bounding the norm of the convergent sequence (xz).

If a(x.) does not tend to 0, say a(x,) > a > 0 after considering a subsequence, then (3.3)

implies

(3.4) 0 < c(M + s)ds !5 -2(zý).

But c(M + s) ?! clM + a) for 0 <_ s <_ a by monotonocity of c, whence 0 < aw(Af + a) !5

-2J(z.). As J(z.) -. 0 and a > 0, this implies c(M +a) = 0, contradicting the pnsitivity

of c. Thus, as before, hrm a(z.) = 0. No further modification is needed in the remainder

of the proof of Theorem 2.1. That its validity implies that of Corollary 2.1 is obvious.

Theorem 2.1 (hence Corollary 2.1) cannot be improved much further beyond Lemma 3.1

if the consts*.t c in (2.1) is replaced by a function of z involving only I1xII. But if c depends

upon z via J(z), things go quite differently. This case is considered in the subsequent

lemma.
I

Lemma 3.2. Theorem 2.1 and Corollary 2.1 remain valid if, in (2.1), we let c = c(-J(x))

where c : [0, co) - (0, on) is nonincreasing and lower semicontinuous.

Note: In sharp contrast with Lemma 3.1, there is here no limit about the rate of decay

of c at infinity. I 0

Proof. Once again, except for replacing c by c(-J(z)) everywhere, there is nothing to

change in Section 2 up to and including inequality (2.7). In addition, even (2.8) remains

valid with c replaced by c(-J(z)). Indeed, from (2.5) with c = c(-J(x)) and (2.6), it

follows that J(p(.,r)) is increasing, whence c(-J(ýp(. x))) is nondecre..ing, in [0,a(x)).

Also from (2.5) and (2.6),

J -W02,) J(2(t 1 ,X)) , c(-J(ýp(s.:r)))ds.

1.
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and the claim follows from c(-J(,p(s,z))) > c(-J(x)) for s E (ti,t2, C [O,a(z)). As a

result, the proof of Lemma 2.2 goes through verbatim upon replacing c by c(-J(z)) in

(2.8).

At the beginning of the proof of Theorem 2.1, choose r > 0 such that r < c(-J(z))q/4.

Nothing else needs to he changed up to and including inequality (2.11) and, instead of (_)
(2.12), we now have

J(-p(a(z) + Y1,zn)) ? J(,p(T, .)) + 2 (a(x) +,7 - T).- 2

By (2.11) and a(z) - T > 0, this yields (for n large enough)

J(k*(a(z) + /,r,.)) Ž_ -2r + c(- J(x.))- .

Using continuity of J and lower semicontinuity of c, we obtain

" .J(a(z) + ,z.)) -2r + c(-J(x))',

and hence Jim.-n.J(,p(a(z) + 7, x)) > 0 from the choice of r. This requires J(9p(a(z) +

,z,.)) > 0 for n large enough, in contradiction with the hypothesis J < 0. This proves

continuity of a.

A final modification occurs in (2.14), which becomes
-2J(z.)

c(-J(z.))

Since J(z.) -- 0 and c is nonincreasing, we have c(-J(z.)) _ co > 0 for every n E N,

where ce is a constant. Thus,

0< a(z< ) < 2
CO

showing, as before,that lir a(z,.) = 0. The end of the proof of Theorem 2.1 remains the
.4.7

same. 0

Remark 3.1: In Lemma 3.2, monotonocity of c is convenient for the proof (and will suffice

for our applications) but actually irrelevant. Instead, one may use the fact that a lower

semicontinuous function achieves its minimum value on every compact set. 0
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The arguments used in the proofs of Lemmas 3.1 and 3.2 can easily be combined to

yield Theorem 3.1 below, where a full statement is given for future reference and where J

has been changed into -J to reinstate a more customary positivity (instead of negativity)

assumption.

Theorem 3.1. Let X be a real Banach space and J : X --- (0, oo) a continuous functional

of class C' in X \ Z where Z J-'(0). Suppose that there are nondecreasing functions

C1,C2 : [0,oo) - (0,oo) with f.0 cl(s)ds = o and C2 lower semicontinuous, such that

(3.5) IIJ'(Z)II ? c:(ilrII)c2 (J(z)), V' E X \ Z.

Then, Z i4 is a contractible subset of X.

I

Note: Condition (3.5) cannot hold if J is C' in X, unless J = 0, for otherwise Z # 0

from Theorem 3.1, and J'(z) 0 for z E Z. But then, (3.5) fails to hold for z E X \ Z

close enough to z.

Proof. Change J into -J to recover the setting of Section 2 and of Lemmas 3.1 and

3.2. By checking the proofs of these lemmas, it appears that except for replacing c by

cj(IlzII)c2(-J(x)), nothing has to be changed in Section 2 up to and including inequality

(2.7). It also appears that inequality (2.8) now takes the form

J(w(t2,T)) - J(V(t,,X)) > 2 c c(-J(z)) + )ds,

which suffices for the validity of Lemma 2.2.

At the beginning of the proof of Theorem 2. 1, choose r < ) f.+ cl (Al + s)ds,

where M > 0 is a constant bounding the norm of the convergent sequence (z,). Combining

the arguments of the proofs of Lemmas 3.1 and 3.2 we find, instead of (2.13), that p

Iim.-.J(w(a(r) + 7, z.:)) ? -2r + c2(-J(x)) cl (M + s)ds,

in contradiction with J _< 0 for n large enough from the choice of r.

13S
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Likewise, (2.14) becomes

0<1 cl(M + s)da <_6( -2J(x.)
0 C2 (-J(X.))

Next, assuming by contradiction that irn a(z,) $ 0 and hence that a(z,) > o > 0 after

considering a subsequence, we get

-2J(r.)
0 < OcI(M + a) :_-5~ ,

Co

where co > 0 is a constant such that c(-J(x.)) _> co. A contradiction with positivity of

cl arises from a > 0 and J(z,.) - 0. From this point on, the proof of Theorem 2.1 can be

repeated without modifications, and of course Corollary 2.1 remains valid. Theorem 3.1 is

proved. 0

As in Lemma 3.2, monotonocity of c2 is not needed in Theorem 3.1 (see Remark 3.1).

Obviously, the product cl(lIzII)c2(J(x)) in (3.5) may be replaced by more general functions

c(IlzI1, J(z)), but this does not seem to lead to substantial improvements in our applica-

tions.

More interesting is the (straightforward) extension of Theorem 3.1 to the case when

X is a complete C2- Banach manifold with a Finsler structure (see [12] or (7]), i.e. a 0

complete Riemannian manifold when dim X < co. The C
2 

requirement is needed for

the existence of Lipschitz continuous pseudo-gradient vector fields. In this framework,

J'(z) must be understood as the differential dJ(z), and the norm of J'(z) in (3.5) is

that of T7,X, hence depends upon z. Naturally, it makes no longer sense to consider the

function c1 (lizIl) since X is not a vector space, but it can be replaced by cl(6(z, 7o)) where

zo E X is fixed and the distance 6 is the Finsler metric of X. In this respect, note that

in this form, (3.5) is independent of the choice of zo: given another point -io E X, we

have 6(zo,z) :5 6(z, io) + 6(io,z), whence c,(6(ro, z)) Ž cl(b(zo,-o) + 6(Io,r)), and

(3.5) holds with io replacing zo and cl replaced by the function cl(6(zo,lo) + s) which

remains nonincreasing with infinite integral in (0, oo). Another (crucial) point is that the

conclusion is no longer that Z #0 is contractible but that Z 6 0 has the same homotopy

type as X.
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4. Sirjectivity of C' submerslons.

We begin with a simple lemma, presumably not new.

Lemma 4.1. Let Y be a Banach space with norm of H clao s CI away from the origin

and set N(v) =- #go, E Y. Then,

(4.1) UIN'(V)I = 1, Vý E Y \ 10).

I
Proof. Let y E Y \ 10) be fixed. By positive homogeneity of N ("Euler's theorem") we

have Nw(y)v = N(v) = Hyil, whence HN'(y)II >! 1. On the other hand, by convexity of N,

the classical inequality

N(z) - N(y) > N'(y)(z - y), Vz E Y,

holds. Thus, for v E Y, we have NT(y)v S Ily + vHj - IhyI < 1HvI, i.e. ttN'(y)Ij S 1. 0

Our "improved" (see Remark 4.1 later) version of Theorem 1.1 is as follows.

Theorem 4.1. Let X and Y be real Banach spaces such that Y has a norm of class C'

away from the origin, and let F : X - Y be a C' mapping. Suppose that for every

sequence (z.), from X the following condition holds

(4.2) F(x.,) bounded =s Ii 5._,(1 + IIr.11) inf. IIF'(X.),YIj > 0 (2).

Then:

(i) F(X) = Y.

(ii) For every y E Y,F-I(y) is closed in X and contractible.

(iii) If y E Y and kerF'(z) splits for every z E F-I(y),F-I (y) is a closed CI subman-

ifold of X (without boundary). Fuarthermore, F-'(V) is compact if and only if F'(x) E

GL(X,Y),Vz E F-I(y), and in this case F-'(y) is a singleton.

(I)In particuiar, F is a submersion; see the proof of the theorem.

0
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(iv) Ifker P(z) splits for every : E X, the manifolds F-'(y),y E Y, are all modeled on

the same closed subspaoce E of X.

Proof. None of the assumptions is aeected by changing F into F - y for some y E Y.

Accordingly, it suffices to show that F-1(0) is nonempty and contractible, and to prove

part (iii) when Y = 0.

Set J(z) = N(F(z)) where, as in Lemma 4.1, N denotes the norm of Y. The functional

J is continuous, of class C' in X \ Z with Z = J-1(0) = F-'(0), and J > 0. Also,

J'(r)h = (N'(F(z)), F'(z)h), h E X, where (., .) denotes the duality pairing between Y'

and Y, whence J'(z) = F'(z)N'(F(x)),: E X \ Z. From Lemma 4.1,

jjJ'(x)j >- minf, F'(x)*v•jj, W E X \ Z,

and hence condition (4.2) implies that for every sequence (z.) from X \ Z we have

(4.3) J(z.) bounded = liM. (I + Ijx.jI)INJ'(x.)II > 0.

In turn, it follows from (4.3) that for every R > 0, there is 7yj > 0 such that

{z E X \ Z,J(z) < R) =* (1 + IlxlI)jjJ'(z)(I >_ -YR.

In particular, letting R = k E N \ 40), we obtain a sequence ('yb) of positive real numbers

such that

(4.4) 4: E X \ Z, J(x) < k1 = (1 + IlxII)jIJ'(z)II > vyj.Sx
Replacing 7t+j by min(-Y, -Yk+l),k > 1, we may assume that the sequence (71,) is nonin-

creasing. For a E [0, o0), set

c2 (s) = yj ifs a E - 1,j), j E N \ (0),

so that c2 is a positive nonincreasing lower sermicontinuous function. Given z E X \ Z, let

k _> 1 be the smallest integer such that k - 1 !5 J(z) < k. Then, c2(J(r)) = -y and, by

(4.4)

(4.5) (0 + IxZDI)J'(z)II 2! c2(J(r)).

1 ..
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* Now, for a E 10, oo), set

CIOs) I /(1 + a),

whence cl is a positive decreasing function satifying f7 cn(s)ds = oo. In this notation,

(4.5) reads

NJ'(Z)II ? cA(lzl)c2(J(x)), Vz E X \ Z,

and nonemptynes and contractibility of Z follow from Theorem 3.1.

Condition (4.2) implies that F is a submersion, for letting z. = z (constant sequence)

we find inf#b* i., > 0, which implies that FP(z) is onto Y (as is well known).

Thus, if ker '(z) splits for z E Z,Z is a C' submanifold of X. Closedness of Z in X is

clear.

For the "furthermore" part in (iii) of the theorem, note that Z being modeled on the

Banach space E := ker F(zo), zo E Z arbitrary, it is not locally compact, let alone com-

pact, if dimE = on. Suppose then that dimZ(= dimE) =p < on. Ifp = 0, we have

FP(z) E GL(X,Y) for z E Z, and Z is contractible of dimension 0, hence a singleton. If

p _> 1, Z cannot be compact, for compact contractible manifolds (without boundary) of

positive dimension do not exist (see e.g. 11, p. 559]).

Part (iv) of the theorem is a general property of submersions with split kernels: by

considering a splitting ker F'(zo)@DSo where So is a closed complement of ker F'Gro), ro E X

fixed, it is easily seen that the restriction to kerF'(z) of the projection onto kerF'(zo)

is a linear isomorphism for z close enough to z0. Hence, the null-spaces ker F'(z) are

locally (in X) isomorphic. By compactness and conneetedness of the line segment joining

two arbitrary points in X, it follows at once that the null-spaces ker F'(z),z E X, are all 5
isomorphic. The conclusion follows from the fact that for y E Y, F-(y)(96 0) is modeled

on kerF'(z) for any z E F-(y). 0

For practical purposes, note that infN.H=l JiF'(..)*y*(l in (4.2) is obtained through

(4.6) inf II.P(z))y'i = irf sup (y',F(z)h)

Remark 4.1: It is of some interest to compare the hypotheses of Theorems 1.1 and 4.1:

(1) When dim Y < oo, the hypotheses of Theorem 4.1 are weaker. In fact, condition

17
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(iii) of Theorem 1.1 alone implies (4.2). To see this, observe that local boundedness of

s (z)/(1 + NzI) over Y and finite dimensionality of Y imply boundedness of s(z)/(1 + IIrII) 6
over the bounded subsets of Y, i.e. for B C Y, a bounded subset, there is I(B) > 0 such

that IUs(z)II/(1 + Ilzl1) < YI(B), Vz E F-I(B). Then, for z E B and y E YIV1 = 1, we

have W, ŽW > sup W, su (
hEX\(O) V-Cymo} (EY\{o)

,( Isup =

sEY\f0)

Thus, from (4.6), (1 + IIjzt)infh,., 1 IIF'(z)*y11j > 1/q(B), Vx E F-I(B), which is (4.2)

since B is arbitrary. (2) When dim Y = oo, the hypotheses of Theorem 4.1 are no longer

weaker: they would be only if "F(rx) bounded" could be replaced by "F(z,) convergent"

in (4.2) (by an argument similar to the one used in (1) above) which of course is weaker

when dim Y = oc, and an open question. 0

More can be said when X and Y are Hilbert spaces.

Theorem 4.2. Suppose that X and Y in Theorem 4.1 are Hilbert spaces. Then, condition

(4.2) alone ensures the validity of (i), (ii), (iii) and (iv) of Theorem 4.1, and in addition

we have

(v) If F is of class C2 , F : X • Y is a locally trivial C* fiber bundle, hence any two

fibers F-(y) are homeomorphic.

(vi) ifX is separable, hence X _2, and dimker F"(zo) = 0c for some zo E X, F-(y)

is C'-diffeomorphic to V' for y E Y.

* 0
Note: Observe that (vi) above holds with merely F E C'.

Proof. The first statement is obvious. We shall prove (v) by showing that Theorem 1.1

applies. Conditions (i) and (ii) of that theorem hold, the former by Theorem 4.1. Also,

recall that condition (4.2) implies that F is a submersion. Thus, it suffices to show that

condition (iii) of Theorem 1.1 holds too.

We begin with a simple remark- if A E .(X,Y) is onto Y, then rge A* (ker A)1

(identifying X = X,Y = Y). Hence, for h E (kerA)' \ (0), there is y E Y (0) such

Is

0



that h = A°Y and we have

JAhII = I y = IiAA~vI lvHil > (AA*y,y) lAvii
flai lAiyu1 - fA'vIi lvii - NAA'yll Ilii = Ily-l

As a result, infillAhii: h E (kerA)I,fhII = 11 > infijll~. IIAi^1. Using this with A =

F'(z),z E X, we find that (4.2) implies that for every bounded subset B C Y, there is a (•)
constant ip(B) > 0 such that

(4.7) (1 + II~zl)inf{IiF'(z)hi: hE (kerFE(z))±,Ilhll -1) > YI(B), Vx E F-'(B).

Next, let zo E X be given, so that F'(xo) E GL((kerF'(zo))',Y) and hence FP(z) E

GL((ker F'(zo))', Y) for z in some neighborhood Us of z0 in X. Local Lipschitz continuity

of F' implies local Lipschitz continuity of the right inverse

so(W) = [F.(z) , J• ' E GL(Y,(kerF'(xo))-'), x E Uo.

Now, for z E U0 , the operator

s() = ['(z, ]- (YX),

is the product of the orthogonal projection "(r)(F'(z)F'(z))-FI(:) onto (ker FP(z))"

and of so(z) (surjectivity of F(z), ensured by (4.2), is equivalent to invertibility of F'(z)F'(.t

Hence, s above is locally Lipschitz continuous in Uo. But s is defined everywhere in X,

and zo is arbitrary, so that s is locally Lipschitz continuous in X.

It remains to show that s(z)/(l + Il:11) is locally bounded over Y. Clearly, 0

Bls(z)ll = I/inf{(IF'(x)hli: h E (ker F'(z))-, Jlhil = 1).

Next, let po E Y be fixed, and let V0 be any bounded neighborhood of yo. From (4.7),

there is qo := YI(V0 ) > 0 such that

(1 + J1:11) inf{llF'(z)hll: h E (kerF'(7))',ilhJJ = 11 }_ Y0, Vx E F-'(Vo),

whence IIs(z)Ii/(l + 11T11) < I/,% for x E F-'(Vo), as was to be proved.
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For the proof of (vi), recall first that every separable C' Hilbert manifold may be

equipped with a Coo structure (111]). In particular, this is true of F-'(y),fy E Y, since

F-`(y) C X and X is separable. Next, ay two separable Hilbert manifolds of infinite di-

mension havirr the same homotopy type are C'o diffeomorphic (we [4, p. 380, footnote]).

From the assumption dimkerF'(xo) = o0 and Theorem 4.1 (iv), F-I(y) has infinite di-

mension for y E Y. As F-'(V) is contractible by (ii) of the same theorem, F-'(y) has the

same homotopy type as 12, and the conclusion follows. 0

Remark 4.2: (1) Extra smoothness of F, e.g. F E Cu'*, ensures that the fibration

F : X -. Y in part (v) of Theorem 4.2, is Ct (see [81), so that the fibers F'(y) are

C* diffeomorphic in this case. (2) In part (vi) of Theorem 4.2, separability of X may be

replaced by separability of the model E := kerF'(zo),zo E X. (3) Obviously, Theorem

4.2 (vi) is not true when dim ker F'(z) is finite (and hence the same for all z E X), so that

F is Fredholm of index p Ž_ 0. We do not know when it can be ascertained that F-'(y) is

diffeomorphic to E = RP (the analog of Theorem 4.2 (vi) for this case), but we note that it

can for p = 0,1 and 2. The result is trivial if p = 0 since F-' (y) is a singleton (Theorem 4.1

(iii)). Likewise, if p = 1, F-(y) is diffeomorphic to R, being a noncompact and connected

one-dimensional manifold. For p = 2, F-'(V) is a simply connected (because contractible)

noncompact two-dimensional manifold, and those are known to be diffeomorphic to R2 (19,

p. 207]). For p = 4, the result is unlikely to be true because of the existence of "fake" R4 ,

but "homeomorphic" is plausible. 0

The following criterion is useful.

Corollary 4.1. In Theorem 4.1, condition (4.2) holds if F is a submersion and every se-

quence(z.) from X such that F(z.) is bounded and lim (I++1z,.I1) inf,-.ffi, IIF'(z.)*yI 1
'.-oo

0 contains a convergent subsequence (and hence no such sequence (z.) exists).

Proof. Suppose that the condition stated in Corollary 4.1 holds, and let (r.) be a sequence

from X such that F(r.) is bounded and mn-..oo(l + I1z.11) infts-li" = IIF'(x.)"y*II = 0.

Extracting a subsequence, we may replace "lira" by "lim" and hence, extracting another

subsequence, assume that irn z,, = .r and lim inft,.p,,i IIF"(x.r.)*I = 0.

is-.o n-oo
20
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To prove the corollary, we show that necessarily infhU,.1 lF(z)xy'jj = 0. Indeed, this

contradicts surjectivity of F"(z) which, as is well known, implies the existence of a constant

"Y ý> 0 such that IIP(z)*Yll ?! -vI1y*iI, VY* E Y*.

For simplicity of notation, set F'(z.) = A., F'(z) = A. By continuity of F', lim11A -

A.11 = 0, hence lir [IA" - A•[l = 0. Now,

inf IIA*z'I1 < HA*y'II < 11A* - A.,I1 + jA.¶•,y'j, Vy" C Y%, 11'*I = 1, Vn E N.
fl•8*I1

As a result,

if IIA'z'j < !A - A*,II + inf IIA:yII,Vn -E N,

and the right-hand side tends to 0, whence in...j DA'z*ll = 0, as desired. 0

When Y = I, the condition in Corollary 4.1 coincides wit the famous Palais-Smale

condition (C), in the weak form discovered by Cerami 15). On the other hand, when

Y = X and F is a local diffeomorphism, we find

Corollary 4.2. Suppose that in Theorem 4.1, F is a local diffeomorphism. Then, F is a

C' diffeomorphism of X onto Y. In particular, it is so if F is a local diffeomorphism and

for every sequence (z.,) from X we have
I)

(4.8) F(z.) bounded -< oo"-• I + If

P•oo. Because iIF'(x)-'{1 = II(F'(z)')- 1 II, w have

inf IIF'(x)y•'= 1,,-,=,II F'(z)-' ll'

i.e. (4.8) is equivalent to (4.2). Parts (i) and (iii) of Theorem 4.1 establish surjectivity and

injectivity of F, respectively. 0

We refer to [151 for other variants of Hadamard's theorem, which all follow from Corol-

lary 4.2 (from the proof of Theorem 4. 1. it is obvious that the weight (1 + IzIf)-I in (4.8)

could be replaced by c(Ilzl1) where c: [0,oo) -- (0,oo) is nonincreasing and f7 c()ds =

oo). Also, without "F(z.) bounded" in (4.8). the condition is known. As it stands, (4.8)

21
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is necessary (and sufficient) for the inverse F-I to have a derivative bounded on hounded

subsets of Y (hence necessary and sufficient when dimX = dim Y < oo). Indeed, if (F-I)'

maps bounded sets to bounded sets, we have F'(z,)- (F-)'(F(z.)) bounded when-

ever F(z.) is bounded, and (4.8) holds. For finite dimensional X and Y, Corollary 4.2

can be further improved ([131).

Because of Corollary 4.2, Theorem 4.1 may be viewed as a generalization of Hadamard's

theorem, and it is natural to ask whether the properness criterion has a similar general-

ization, i.e. whether proper C1 submersions are surjective. Submersions being open (even

without split kernels, [1]) and proper mappings closed, the answer is positive. However, the

usefulness of this remark depends partly upon the breadth of the class of proper submer-

sions. Strong evidence that those are hardly more than diffeomorphisms has already been

provided by Berger and Palstock 12], who showed that there is no C2- proper submersion

which is Fredholm of index p -: 1. Our next corollary goes a little bit further, in the same

direction.

Corollary 4.3. Let X and Y be real Banach spaces such that Y has a norm of class C'

away from the origin and let F : X -- Y be a proper C' submersion. If either

(i) ker F'(z) splits for every z E X and F is of class C
2

,

or

(ii) dim Y <o.

F is a diffeomorphism of F onto 1.

Proof. In both cases (i) and (ii), kerF'(x) splits for x E X. As noticed above, F is * 0
onto Y, whence F-'(y) is a C' submanifold of X for Y E Y. Also, F-(y) is compact

so that dim F-(y) < oo by an argument from the proof of Theorem 4.1 (iii). Since

dimF-1(y) = dimker F'(x),x E F-(y), we have dimker F'(r) < oo, Vr E X, i.e. F is a

Fredholm mapping with index p Ž0.

In case (i) of the corollary, p - 0 from the aforementioned result of Berger and Pla-

stock. In case (ii), it follows from properness of F and finite dimensionality of V° that

condition (4.2) holds, using the criterion of Corollary 4.1 (if F(z.) is bomnded, it contains
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-egent subsequence; next, use properness of F). By Theorem 4.1 (iii), we have
F;(z~) I GL(X, Y), Vz , X, so that, onee again, p = 0.

Thus, in both cae, F is a proper local diffeomorphism (being a submersion), and hence .
a difleomorphism of X onto Y. 0

Remark 4.3: In sharp contrast with Corollary 4.3, it is easy to find examples of mappings (2
satisfying (4.2) which are not diffeomorphisms. For instance, all the linear continuous

surJective maps do. 0

Our final result shows that the mappings of Theorem 4.1 satisfy a converse of the

intermediate value property.

Theorem 4.3. Let X and Y be real Banach spaces such that Y has a norm of class C'

away from the origin, and let F: X -- Y be a C' mapping satisfying condition (4.2) of

Theorem 4.1. Then, the inverse image F-'(U) of an open connected subset U C Y is

(open and) nrmnected.

Proof. As a first step, we show that the inverse image of a closed ball f with radius r > 0,

is contractible (the case considered in Theorem 4.1 is r = 0). With no loss of generality,

assume that 7 is centered at the origin, and for z E X, set

4.(z) = max(JlF(x)ll,r) - r.

This functional is continuous, nonnegative and Z, := J,'(0) = F-'(',7). For x E X \ Zr

we have Jr(z) = JIF(z)f( - r = J(z) - r where J is the functional of the proof of Theorem

4.1. Thus, J, is of claw C' in X \ Z, and JX(r) = J'(z) for z E X \ Z. As was seen in the

proof of Theorem 4.1, condition (4.2) implies that J' satisfies inequality (3.5) of Theorem

3.1 for r J F'(0). As a result, J, satisfies the same inequality for z I Z, = F-'(.r),

and contractibility of F-'(f',-) thus follows from Theorem 3.1.

Next, let U C Y be a connected open subset, and let z,.zz E F-I(U). We shall prove

that there is a continuous path in F-1(11) joining z, to X2, which suffices to establish its

connectedness. Set it. F(r,) E U.i = 1,2. and let ea : 0,11 -, U be a continuous path
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joining z1 to z2. Since U is open and u([O, 11) is compact, the distance from 4([0, 11) to

Y \ U is positive, and hence there is r > 0 such that the closed ball with center a(t) and

radius r is entirely contained in U irrespective of t E [0,11. Consider a minimal (finite)

covering of u(O, 11) by the interiors B,, 1 < i < k, of such balls. Using finiteness and

minimality of the covering along with connectedness of a([0, 1]), it is easily seen that we

may manage so that y, E B, and for 1 < i < k- 1,(l6BI)fnBi+, ; 0. Set C, =

6U W C U, so that C.,+1 = C, U W,+1 and C. n A.+ 1  9 . From the first part of the

proof, F-'(fo,) is contractible, hence pathwise connected. Since F-`(C1 ) = F-'(H,) and

F-'(Cs) f= F-I(Ci) U F-(+ 1 ), F-I(Cj) n F-l(A +,) # 0, it follows by induction

that F-'(C,) is pathwise connected for 1 < t < k. In particular, F-(Ci) is pathwise

connected, and r, z 2 E F-'(a([0,11)) C F-I(Ck) C F-I(U). Thus, z, and z2 can be

joined by a continuous path in F-'(Ck), and therefore in F-(U). 0

Remark 4.4: Naturally, more is true when F: X -. Y is a locally trivial C* fiber bundle

(e.g. when Theorem 4.2 (v) applies), namely F-I(U) and U have the same homotopy

type for every open subset U of Y'. This follows from contractibility of F-'(y), y E U, and

arguments from the proof of Theorem 1.1. 0

From the remarks at the end of Section 3, it follows that the results of this section have

counterparts when X is a complete C2 - Banach manifold with a Finsler structure (and Y

remains a Banach space with a C' norm away from the origin). Condition (4.2) must be

modified into

(4.10) F(z,) bounded =* Jim,_+,(lz+ 6(x.o)) inf lIdF(n.)*y 11 >0,

where 6 is the Finsler metric of X,.zo E X is fixed and dF(z) : T0 X -- is the dif-

ferential of F at x. Condition (4.10) is independent of the choice of r0 (see Section 3).

Contractibility of F'1(y) in part (ii) of Theorem 4.1 must be changed into "F-I(y) has

the same homotopy type as X" (and in particular is pathwise connected when X is con-

nected). For this reason, Corollary 4.3 is no longer valid a- stated: if X is the cylinder

S' x R, the projection X = S' x It -. R = Y is obviously a proper C' submersion but

not a diffeomorphism. Similarly, in part (iii) of Theorem 4.1, it can be ascertained that
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F-'(y) is not compact only if X does not have the homotopy type of any compact manifold

(without boundary). Theorem 4.2 (v) is unchanged, but in (vi) it is only true that F-I(y)

and F 4 {z) are C'  difteomorphic, unless X is contractible (but then X = t from the

arguments of the proof of Theorem 4.2 (vi), and hence that theorem applies). Theorem

4.3 remains valid if X is connected (thus pathwise connected).
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